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The article reports on the initial part of the stage of regular thermal regime 
of a plate heated by a constant heat flux, and a method is suggested for de- 
termining thermal conductivity and thermal diffusivity. 

The present article suggests applying the method to flat specimens; this will make it 
possible to retain the positive aspects of the method [i] and to broaden the class of inves- 
tigated materials to include anisotropic ones of which the thermophysical characteristics 
(TPC) are determined. 

We assume that in the general case the investigated material is anisotropic. Let us 
consider the equation of heat conduction 

OT 
c p - -  = - - d i v q  + g. (1) 

Ot 

For orthotropic bodies the value of q in a system of Cartesian coordinates is equal to: 

- t( x 0r0x i+x  0r. 0r ) 
q = -~-9 J + X ~ z  k , (2) 

where Ix ,  Xy, X z a r e  t he  the rmal  c o n d u c t i v i t i e s  along the  axes of  c o o r d i n a t e s .  On the  as-  
sumption t h a t  Ix ,  t y ,  t z does not  depend on the  c o o r d i n a t e s  of  the  p o i n t s  of  the  body, and 
with (2) taken into account, we write Eq. (i) in the form 

OT 02T ~,, 02T O2T ( 3 )  
c9 = ~'~ - -  + + )'z - -  

Ot Ox z 9 0 y  2 022 

We will solve Eq. (3) with the following assumptions: 

i) we have a specimen in the form of a rectangular parallelepiped, and the origin of 
coordinates lies at the center of one of its sides so that 

O < ~ x ~ l ,  - - l v ~  g ~  l v, - - l ~ z . ~ I z ;  (4) 

2) at the initial instant the temperature of the specimen is equal to the ambient tem- 
perature; 

3) there are no internal heat sources (g = 0); 

4) at the instant t = 0 on the entire side x = 0 a surface heat source with constant 
heat flux density q begins to act; 

5) on the other sides heat exchange with the environment obeys Newton's law. 

In view of the above-said the problem reduces to the solution of Eq. 
ary conditions 

(3) with the bound- 

TJ~=o= To, ~,~ -Z2. x=O - - l -ax (T - -To )  = 0 ,  
X~ l x 

~'v ~0T _+ ~u (T- - ro ) ]  = 0 ,  Zz --~-z -+- a~(T--  = (5) 
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Fig. i. The dependence O~(Fo) on one surface of the plate 
when it is heated from the other side, with different con- 
ditions of heat exchange. 

Fig. 2. On the processing of the experimental results. 

The system (3)-(5) becomes greatly simplified if one of the dimensions of the specimen 
is made as small as convenient in comparison with the other dimensions. We introduce the 
dimensionless magnitudes : 

x y z ~ T -- T O 

~ = Z ' ~ = Z ' ~ = ~  ' a ~ = - '  ~  ~p To 
lx s ~'z ax 

l,= ~ .  l~=T.  ~,= Z ,  ~ = ~ .  Vo= .~-l~ t 
(6) 

and rewrite Eq. (3) in dimensionless form 

020 020 
8 Fo 0X ~ 0~12 0~ ~ 

When we make s and s sufficiently large so that the coefficients s and s can be made as 
small as desirod, we may neglect the last two terms in Eq. (7) and reduce the problem to the 
unidimensional case 

OO = ,  0~O ( 8 )  

0 F0 OX 2 

with the boundary conditions 

%0=0 = o,-~-7~=o=-Q, t-~z ~o ~==o,  (9) 

where 

Q =  qlx/To~ x, B = ~xt~/lx. (10)  

By using the method of integral transformations, we obtain the solution of the system (8)- 
(9) in the form of the series 

o* = 2 ~ (,Lq + B~)cos(~,X,) 
~ ( ~  + B2 "b B) 

i - - : l  

[I -- exp (-- ~ Fo)], (n) 

1138 



TABLE i. Dependence of the Coefficients A and 8 o on the 
Conditions of Heat Exchange (numbers B) 

B 0,01 0,05 0,10 0,20 0,30 0,40 0,50 1,00 

A 0,9897 0,9578 0,9245 0,8687 0,8772 0,7816 0,7459 0,6120 

- - 0  o 0,1623 0,1517 0,1420 0,1277 0,1167 0,1079 0,1004 0,0754 

where 

O* = ~ (T - -  To)/qI~. 

Summing is carried out over all the positive roots ~i 
tic equation 

(i = I, 2, 3, 

(12) 

...) of the characteris- 

B cos ~ -- ~ sin ~ = 0. (13) 
On the basis of practical considerations it is rational to measure the temperature on the 
side of the specimen X = i. In that case, with a view to (13), we express the solution of 
(ii) in the form 

V g + B 2 
o*= 2 ~ (-- 1/+' ~ ( ~  + B  2 + B) [1 --  exp(--~Fo)].  (14) 

t =  1 

An example of  t he  dependence O*(Fo) f o r  X = 1 and d i f f e r e n t  va lues  of  B i s  g iven in Fig .  1. 
We can see that on the graphs there is an inflection. In the vicinity of the point of in- 
flection there is a segment of the dependence which in the limit coincides with the tangent 
at the point of inflection. We write the equation of the tangent 

0 "  = O o + A F o ,  

where A determines the slope tangent, and 0 0 is the value of O* for Fo = 0, 
of intersection of the tangent with the O*-axis. 

We determine the coefficient A from the condition 

(15) 

i.e., the point 

A -  aO* = 2 ~ ( - - I / + '  
a F o  Fo=Fo n i = 1  

where Fon are the roots of the equation 

~ (~f + B~ § B) 
exp (-- ~ Fo), (16) 

020* S = l 2 ( - -  1 / + 1  
0 Foz 

i =  1 

The c o e f f i c i e n t s  O0 a re  found from (15):  

] / ~  + BZ ~2 exp (-- ~ Fo) ---- 0. ( 17 ) 
~i (~ + B" + B) 

@o = @~--A Fo~, (18) 

where 

O n : O * [ F o = F o  n �9 

The coefficients h and O0 for (16) and (18) are calculated with specified accuracy for dif- 
ferent values of the number B. Table 1 presents examples of the values of A and O 0 for sev- 
eral values of the number B. Expression (15) can be used for determining the thermophysical 
characteristics. For that we express (15) in dimensional magnitudes 

AT 

qlx 

and differentiate with respect to time 

a~ - - z~=  eo+A--~.t (19) 
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Fig. 3. Schematic diagram of 
the installation for determin- 
ing the thermophysical charac- 
teristics of materials on speci- 
mens in the form of plates. 

~= d(AT) A 
= ~ ax. (20) 

qlx dt lx 

Solving (19) and (20) for X x and a x, we obtain the theoretical expressions: 

d (AT) 

ax = [ d (AT) AT J d----~ ' 
A t dt (21) 

Ex ~- Ooqlx 
, t --d(AT) AT 

dt 
where AT = T - T o is the difference between the temperature of the surface (X = i) of the 
specimen and the ambient temperature. We express the theoretical expressions (21) through 
the characteristic magnitudes of the experimental dependence of the change of temperature on 
time. For that purpose we draw the tangent and extend it up to its intersection with the 
axes T and t (Fig. 2). The segments intercepted by the tangent on the axes are denoted A and 
to, respectively. It follows from geometric considerations that 

AT-=t  d(AT____~) A, A _ d(AT._____D (22) 
dt t o dt 

and we write (21) in the form 

~ O~ Ool~ (23) 
- -  A , a x -  Ato 

The coefficients A and 8o depend on the conditions of heat exchange (see Table i), and the 
less heat exchange there is, the smaller is the error with which the limit values of the co- 
efficients are taken: A = i, 8 o = 1/6. 

For more accurate measurements of the thermophysical characteristics it is necessary to 
estimate the heat exchange realized in the experiment from the same thermogram (Fig. 2), and 
in accordance with the magnitude of the Blot number the values of the coefficients A and 80 
are taken. 

A diagram of the installation for implementing the quasilinear method on flat specimens 
is shown in Fig. 3. The investigated specimens in the form of plates 40 x 40 x 5 mm in size 
were placed in a special measuring cell. For the investigation of the temperature dependence 
of the thermophysical characteristics the cell was put in a thermal chamber. Between the 
specimens the heater was inserted in the form of a flat spiral of constantan 0.05 mm thick. 
Current to the heater was supplied by a stabilized source VS-26, the power released by the 
heater was calculated from the voltage and current intensity measured with an ammeter MI107 
and a voltmeter MI109. The instruments had class of accuracy 0.2. The surface temperature 
of the specimens was measured with the aid of a calibrated chrome-copel thermocouple with 
0.09 mm diameter of the electrodes. One junction of the differential thermocouple was at- 
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tached at the center of the surface of the specimen, the other was located in a Dewar vessel. 
The constant component of the emf arising in consequence of the temperature difference be- 
tween the "hot" and the "cold" junctions was compensated by a potentiometer R330. The vari- 
able component arising after the heater had been switched on was transmitted to the dc ampli- 
fier 137 and was recorded on the recording strip of the instrument N37. 

On the installation we measured the thermophysical characteristics of polymethyl meta- 
crylate with a density of 1170 kg'm -s Deviations of the TPC from the data of [2] did not 
exceed 6%; this confirms the efficiency of the method. 

On the same installation we also measured the thermophysical characteristics of glass 
reinforced plastic in the direction perpendicular to the fibers. The filler in the investi- 
gated material was 50 weight parts glass tissue, the initiating system was benzene peroxide, 
binder was 40 weight parts polyester resin. The density of the investigated glass reinforced 
plastic was 1600 kg/m 3. Processing of the experimental data made it possible to represent 
the temperature dependence of the TPC of glass reinforced plastic for the temperatures 290- 
450~ in the form of the expressions: 

a T = (2,45 @ 0,33.10-2T). 10 -r mZ/sec; 

%r ----- (0,16 -[- 0,32.10-3T) W / m .  'i<; 

c T = (- -  0,48 + 0,52- 10-ZT) kl/kg.  ~<. 

NOTATION 

T, temperature of the plate; To, initial temperature of the plate and ambient tempera- 
ture; g, volume density of the heat sources; q, heat flux density; s thickness of the plate; 
lx, thermal conductivity along the x axis; ax, thermal diffusivity along the x axis; ~, heat 
transfer coefficient; Fo, Fourier number; B, Biot number; p, density of the material of the 
plate; c, heat capacity; t, time. 
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